Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Anwar Usman, ${ }^{\text {a }}$ Ibrahim Abdul Razak, ${ }^{\text {a }}$ Suhana Satar, ${ }^{\text {b }}$
Maisara Abdul Kadir, ${ }^{\text {b }}$ Bohari M. Yamin ${ }^{\text {b }}$ and Hoong-Kun Fun ${ }^{\text {a }}$
${ }^{\text {ax X-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.148$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Benzoyl- N^{\prime}-(2,6-dimethylphenyl)thiourea

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$, the benzoyl and dimethylphenyl substituents have trans and cis configurations, respectively, with respect to the thiourea S atom. The aromatic rings of the two substituents are nearly perpendicular to each other. The molecules are interconnected into molecular chains along the b direction.

Comment

Although several thiourea derivatives, which are used as ligands in metal complexes (Razak et al., 2001, 2002), have been synthesized, knowledge of their molecular structures is still scarce. This may due to the difficulty in obtaining a suitable crystal for X-ray diffraction studies. As part of our ongoing studies of thiourea-metal complexes, we have prepared the title compound, (I), in order to explore new ligands. Its X-ray crystal structure determination has been undertaken to elucidate its conformation, and the result is reported here.

(I)

The bond lengths and angles in (I) (Fig. 1 and Table 1) are within normal ranges (Allen et al., 1987). The dimethylphenyl and benzoyl substituents lie cis and trans, respectively, to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds, as was observed in the 3,4-dimethylphenyl analogue (Shanmuga Sundara Raj et al., 1999). The bond lengths and angles are typical for thiourea compounds and are comparable with the corresponding values in the literature (Zhang et al., 1996; Cao et al., 1996). However, the bulky 2,6-dimethyl groups result in a significant reduction in the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$ bond angle $\left[123.2(2)^{\circ}\right]$ compared with that in its 3,4-dimethylphenyl analogue [127.9(2) ${ }^{\circ}$. Also, the carbonyl C7-O1 bond length is shortened from 1.233 (2) \AA in its 3,4-dimethylphenyl analogue to $1.219(2)^{\circ}$ in the title compound.

The carbonyl-thiourea (S1/C8/N1/N2/C7/O1) moiety joining the two phenyl rings of the dimethylphenyl and benzoyl rings is planar, with a maximum deviation of 0.054 (1) \AA for atom C7. The planarity of the carbonyl-thiourea moiety is due to the $s p^{2}$ states of the N and C atoms. An intramolecular $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$ interaction (Table 2), which forms a six-membered ring $(\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{H} 1 A)$

Received 26 April 2002 Accepted 8 May 2002 Online 17 May 2002

Figure 1
The molecular structure of the title compound, shown with 50% probability displacement ellipsoids

Figure 2
Packing diagram of the title complex viewed down the a axis. The dashed lines denote the $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intermolecular contacts.
(Fig. 1) and increases the π-conjugation of the carbonyl and thiourea, may also contribute to the planarity. The carbonylthiourea plane makes dihedral angles of 23.1 (1) and 76.2 (1) ${ }^{\circ}$ with the aromatic rings of the dimethylphenyl and benzoyl substituents, respectively.

The aromatic rings are nearly perpendicular to each other, the corresponding dihedral angle being $81.3(1)^{\circ}$. The two methyl groups are on opposite sides of the aromatic ring and deviate from the plane by $0.013(2) \AA(\mathrm{C} 15)$ and $-0.050(2) \AA$ (C16).

In the title structure, the thiourea atom S 1 is involved in a weak intermolecular $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~S} 1^{\mathrm{i}}$ interaction [Table 2;
symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$], which interconnects the molecules into infinite zigzag molecular chains along the b direction (Fig. 2). The packing is stabilized by this interaction along with the dipole-dipole and van der Waals interactions.

Experimental

A solution of 2,6-dimethylaniline $(0.33 \mathrm{~g}, 20 \mathrm{mmol})$ in acetone $(40 \mathrm{ml})$ was added dropwise to 40 ml of an acetone solution containing an equimolar amount of benzoyl thiocyanate in a twoneck round-bottomed flask. The solution was refluxed for about 1 h and then cooled in ice. The white precipitate which formed was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 75\%). Recrystallization from DMF yielded single crystals suitable for X-ray analysis.

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=284.37$
Monoclinic, $P 2_{1} / c$
$a=9.5077$ (3) A
$b=11.1226$ (4) \AA
$c=14.0147$ (5) \AA
$\beta=97.823$ (1) ${ }^{\circ}$
$V=1468.27(9) \AA^{3}$
$Z=4$
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5482 reflections
$\theta=2.8-28.3^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Slab, colorless
$0.40 \times 0.28 \times 0.12 \mathrm{~mm}$
Data collection
Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.918, T_{\max }=0.974$
8741 measured reflections

> 3564 independent reflections 2416 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.084$
> $\theta_{\max }=28.3^{\circ}$
> $h=-11 \rightarrow 12$
> $k=-14 \rightarrow 14$
> $l=-18 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.148$
$S=0.94$
3564 reflections
219 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0672 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.52 \mathrm{e}^{-3}$

Table 1
Selected interatomic distances (\AA).

$\mathrm{S} 1-\mathrm{C} 8$	$1.6599(19)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.436(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.219(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.373(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.331(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.395(2)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	$0.82(2)$	$1.99(2)$	$2.670(2)$	$140(2)$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.98(3)$	$2.94(3)$	$3.862(2)$	$157(2)$
Sym				

The H atoms were located from a difference Fourier map and were refined isotropically, except for the H atoms attached to $\mathrm{C} 12, \mathrm{C} 15$ and C16 which were fixed geometrically and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and both Universiti Kebangsaan Malaysia and Universiti Sains Malaysia for research grants IRPA Nos. 09-02-02-0163 and R\&D 305/PFIZIK/610961, respectively. AU thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cao, Y., Zhao, B., Zhang, Y. Q. \& Zhang, D.-C. (1996). Acta Cryst. C52, 17721774.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Razak, I. A., Usman, A., Fun, H.-K., Yamin, B. M. \& Goh, W. K. (2001). Acta Cryst. E57, m527-m528.
Razak, I. A., Usman, A., Fun, H.-K., Yamin, B. M. \& Goh, W. K. (2002). Acta Cryst. C58, m31-m33.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zhang, O.-C., Zhang, Y. Q., Cao, Y., Zha, O.-B. (1996). Acta Cryst. C52, 17161718.

